29 gennaio 2015
San Francesco - Via della Quarquonia 1 (Classroom 2 )
The idea of predicting the future from the knowledge of the past is quite natural when dealing with systems whose equations of motion are not known. Such a long-standing issue is revisited in the light of modern ergodic theory of dynamical systems and becomes particularly interesting from a pedagogical perspective due to its close link with Poincare''s recurrence. Using such a connection, a very general result of ergodic theory - Kac's lemma - can be used to establish the intrinsic limitations to the possibility of predicting the future from the past. In spite of a naive expectation, predictability results to be hindered rather by the effective number of degrees of freedom of a system than by the presence of chaos. If the effective number of degrees of freedom becomes large enough, regardless the regular or chaotic nature of the system, predictions turn out to be practically impossible. The discussion of these issues is illustrated with the help of the numerical study of simple models.
relatore:
Vulpiani , Angelo
Units:
NETWORKS